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Free Surface Tracking for the Accurate Time Response
Analysis of Nonlinear Liquid Sloshing

Jin-Rae Cho”, Hong-Woo Lee
School of Mechanical Engineering, Pusan National University,
Busan 609-735, Korea

Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external
excitation is of large amplitude or its frequency approaches natural sloshing frequencies.
WNaturally, the accurate tracking of time-varying free surface configuration becomes a key task
for the reliable prediction of the sloshing time-history response. However, the numerical
instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-
time beating simulation, when two simulation parameters, the relative time-increment parameter
@ and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the
effects of these two parameters on the potential-based nonlinear finite element method
introduced for the large amplitude sloshing flow.
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1. Introduction

One of the major issues in the numerical
analysis of large amplitude liquid sloshing is a
free surface tracking. It is because the free surface
configuration plays an important role not only in
the flow domain identification but also as the
kinematic and dynamic boundary conditions of
initial-boundary-value sloshing problem. In ad-
dition, a small error in the free surface tracking,
which is to be accumulated with the time integra-
tion stage, may cause the numerical dissipation
and instability in the time response analysis of
nonlinear liquid sloshing (Chen et al,, 1996).

in order for the accurate time tacking of
the free surface configuration, various useful tec-
hnigques have been introduced. Nakayama and
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Washizu (1981) introduced an error correction
term into the dynamic boundary condition for the
boundary element formulation, and Okamoto
and Kawahara {1990) proposed the velocity cor-
rection method based on the Lagrangian FEM
formulation. Chen et al.(1996) used the implicit
finite difference method based on the Crank-
Nicolson time marching scheme in which second-
order numerical dissipation term was added to the
kinematic boundary condition to suppress the
numerical instability. On the other hand, Kanok-
Nukulchai and Tam (1999) introduced a large-
displacement fluid clement based on total La-
grangian formulation by employing the penalty
method to enforce the liquid incompressibility.
In the current study, the free surface configura-
tion is tracked by time-integrating the kinematic
and dynamic boundary conditions making use of
a forward-difference time differentiation of the
free surface elevation and the predictor-corrector
method incorporated with the mass-conservative
remeshing scheme {Cho and Lee, 2003). The
problem itself is formulated based upon the fully
nonlinear potential flow theory, so that the state
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variable is the velocity potenrial. Meanwhile, ac-
cording to the least square method, the flow
velocity field is interpolated from the velocity
potential field approximated, with second-order
finite elements.

The kinematic boundary condition governing
the free surface configuration includes a convee-
tion term (Currie, 1974}, and which has been a
critical cause lcading to the difficulty in the free
surface time tracking. In order to avoid the diffi-
culty in dealing with the convection term, we
devise an alternative technique to time-integrate
the kinematic boundary condition. We directly
evaluate the time derivative of the Ifree surface
elevation according to the forward difference
scheme and then update the free surface configu-
rarion making use of the predictor-corrector
method {Gill and Cullen, 1992}, The time in-
crement &¢ for the forward difference scheme is
controlled by a parameter @{0<a<1) defined as
the relative ratio to the time step size Af, Then,
the choice of @ affects the numerical accuracy and
stability in the [rec surface time tracking. Besides,
the fluid mesh pattern does also influence the free
surface tracking accuracy even though the total
liguid volume is kept unchanged by the above-
mentioned remeshing scheme. it is because the
large amplitude liquid sloshing shows a high
singularity in the {low field near the free surface.

The purpose ol the current study is to examine
the reliability of the free surface tracking tech-
nique introduced into the potential-based non-
linear finite element method for large amplitude
sloshing flow. In particular, the main observa-
tien focuses on the elfects of twe key parameters,
the relative time-wnerement parameter ¢ and the
fluid mesh pattern, on the numerical stability and
dissipation,

2. Problem Description

We consider a sloshing flow of inviscid in-
compressibic [iquid in a two-dimensional rigid
tank of width 2¢ subjected to a forced horizontal
excitution. In the stationary condition, liquid is
filled up to the height Hr. For mathematical
description purpoese, we use two Cartesian co-

Vo ¥ rigid tank

w— - I S

a—n 5% g

v

Fig. 1 Liquid contained in 2--1 rigid tank subject 1o

forced excitation

ordinatwe systems, {5} fixed in space and {X)
moving with the tank, such that their origins arc
at the center of the stationary tree surface and
their axes are taken parallel 10 each other. Then,
a scalar quantity @ can be expressed in either of
two co-ordinate systems such that @ (xo, va: /) =
@ (x, y; t). By denoting u®(¢) ={dx®/dt, dv®/
di} be the rigid tank velocity, we have the
relations between two systems ;

A A .
Tf 7 I u v i)
V@lix =V @i, (22

Hereafier, the subseript O refers to the quantities
measured in the Hxed Cartesian co-ordinates,

By denoting ¢ (xs. vo: ) be the velocity poten-
tial, the continuity condition is described by the
Lapluce equation :

Vih—=0, in * 3

On the liquid-structure interface, the velocity
potential should gatisty

Vé-n=u’-n, on 553} {4)

with the outward unit vecler £ normal to the
structure boundary. In the fixed Cartesian co-
ordinates, the kinematic and dynamic conditions

on the free surface are as foilows ;

I 9P 0L I _ 20Ot 53
ol ke s Oy 0, on oS (5)

%—fﬂf LVgVhtat=0 on 32 (0
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in which &(xo: #) is the vertical coordinate
volxo; £) of the free surface.

Since the free surface fluctuation is a relative
motian with respect to the container, the moving
coordinates is usually preferable. By denoting
Elo;, H=%(xe; 11 —v*(#) be the free surface
elevation from the reference stationary level, to
gether with Egs. (1) and (2), above free surface
conditions are rewritten as

(96 5\ 3 (90

ot x R 8}’ 73/{3:)' 0 (7)

3“5 — UV LV Tprg (fHy =0 (8)

In the moving co-ordinate system, the velocity

potential ¢ {x, y; #) can be split into 1wo paris,

dulx, vi £)) due to the internal sloshing flow
and $p{x, v ; #) due to the tank mation, such that
= Put s, Pp=xuityus (9)

Substituting Fg. (9) inte Egs. (7) and {8) we

have

oL | d¢u 05 Obn

at * ox dx  dv =0 (10)
e A VgVt br Ul
ot 2 df ()

Uy
= lwl—gy

It is worth to note that the RHS in Eq. {11) can
be deleted because not only both terms are coor-
dinate-independent quantities but also the veloc-
ity potential is & relative quantity in space.

Then,
nonlinear sloshing flow in the moving co-or-
dinate system is formulated as follows ;

Vipn=0, in 2 (12)

with initial conditions
pp=—xui{0) -

&=0. on J0F {14)

YY), in 2° {13

and boundary conditions

Vdn-n=0, on 9&Ff {(15)

4t 9y 95 | Ga /
ot dx ox - dv ' on 942 (o)

the inifial-boundary-value problem of

dus

@@:fLVq’)h'vqﬁh*gé’Ax dt

aét ,
17)
duv (7,

— =0 on g0t

3. Time-Incremental Kinite Element
Approximation

I order to solve the above nonlinear sloshing
problem we divide the observation time interval ¢
into a finite number of sub-intervals such that
t=ndi (n=0, 1, 2, ---). With initial conditions
{13)~{14) and the Boundary condition {13}, we
solve the Laplace cquation (12) defined in initial
flow domain @ and boundary 8%2° to seek &Y.
With which we compute the flow velocity field #°
and perform the free surface tracking., By time-
integrating the kinematic and dynamic boundary
conditions (16)-(17). we identify £, £2' and 30",
I this manner, the sloshing time response is to
be numerically analyzed.

Referring to Fig. 2, we consider Lime stage By
at which ¢% and ©”
geometry and field quantitics determined at time

are to be sought with the
stage fp-;. According to the Galerkin method,
we have the weak form of Eq. (12): find ¢% such
that

LHV;&-WBM@):O (18)

for every admissible velocity potential w{x, 3).
The corresponding essential boundary condition
on o827 is ¢k determined beforechand by the free
surface tracking method described later.

By introducing nine-node Lagrange-type finite
clement basis functions {N;}X, and the nodal
potential vector ¢}, we approximate

. 7( .
i b ;, stationory Jevel

[y, vm)

on

Fig. 2 Sloshing flow configuration at time stage fy
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h=Neg} (19)
Substituting Eq. (19) inte Eq. {18) leads to
I(a,'(:'() (20)

with the matrix K defined by
K~ [ (VN)(VN) dv (21)
971

From the velocity potendal ¢f approximated, the
intermediate velocity field ©" is computed ac-
cording to

"=V Neg} (22)

Owing to the C® continuity in the velocity poten-
tial field, the intermcdiate velocity field becomes
to be discontinuous across clement interfaces.
One may consider the linear interpolation of the
velocity values at Clauss inlegration points in
arder to oblain the continuous velocity field with
the better accuracy. However, a small error in the
velocily computation does not only affect the
accuracy in the free surface tracking but also
accumulate with the time stage. In order to mini-
mize this crucial problem, we first interpolate
clement-wisc wvelocity fiefds with second-order
polynomials according to the least square meth-
od. Let us denote &g (¢=x, v, be the element-
wise velocity components to be interpolated :

Vi=atwst ot ady+asftasy®  (23)
And we define the element-wise crrors by
8
Ha *E{ﬁg(fl ng — &, Uz)}Z, a=x.v (24)

! stand for (3x3)
points, Then, six cocfficients involved in each

where Gauss integration
velocity component are determined from six sim-
ultancous equatiens constructed from

e

=0, A=1,2, -, 6 25)

dax ) (
From #ig interpolated, we next calculate the ve-
locity valucs for individual elemants and average
the nodal values for the common nodes. Finally,
the global continuous velocity field is inter-
polated using the same findte element basis fune-
tions used in Eq. (19) and the componcnt-wise

nadal velocity vectors o :
ve=Ncv}, o=x. ¥ (26}
4. Free Surface Tracking

After obtaining the velocity potential and the
flow velociry field. we integrate Eq. (16} to track
i+l

the frec swtace § and Eq. (17) to determinc

the essential boundary condition ¢i™!

. A mass-
conscrvative remeshing process follows the free
suvface wracking, while keeping the mesh vegu-
larity, in order to update the liquid mesh. In the
kinematic boundary condition (16}, the major
fecature is the convection ferm in the rvight hand-
side. The influence of this term increases as the
sloshing amplitude becomes larger, and which
may cause the numcrical divergence, the high
frequency wiggle or the numerical dissipation, in
the sloshing time response {Chen et al., 1996),
unless any special care is paid in the frce surlace
tracking, Tn the prescnt study, we introduce the
direct differentiation 1o track the free surface
without causing the numerical instability.

Referring to Fig. 3, we predict the [rec surface
variation in the small time increment & (8f=
edt, 0<< @< 1} from the current time # according
¥

xi=x:+ 8 @éﬁ
ax

(X5,%4)

(273
vi=y;+ 8t i

oy

[EFRS

Here, ¢ is defined by the relative time increment
parameter and (x: vy: the coordinates of nede
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Fig. 3 Varation of the free surface in the time

increment &t
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i on the free surface al time fn. And, the cleva-
tion of node 7 in the time increment &f can be
caleulated through

7 F "
fr= 28 T ) (28)
JCJH ij
Then, the time derivative of the free surface ele-
vation in Eq. (16) is directly calculated by the
forward diffcrence scheme

9f | 8t
ot |n~ 6t

_r=E
M (29)

We next apply the predictor-cosrector method
composed ol the explicit fourth-order Adams
Bashforth scheme {Golub and Ortega, 1992)
and the implicit fourth-order Adams-Moulton
scheme (Golub and Ortega, 1992) given respec-

tively by
gfn— — g:z [ a‘; 5 ‘:‘n .
It 3t (30)
-%’ o 0%
3 5 e J
Akl — genn | S a; '95
R BT A a
e em‘ ]
. 5 n—1 3i H-2

in order to predict the free surface elevation at
the next time stage frey. Then, we relocate the
free surface neodes onto the new [ree surface
O2FT by moving only in the vertical direction,
as depicted in Tig., 4{a).
the total liguid arca according fo the trapezoidal

As well, we calculate

rule

A.fowZA As= (01— 701) é'”*? (32)

Then, the mean free—surface elevation Cpeas can
be calculated as follows : Suean=sor/2d and the
nodal free surface heights %! are corrected {Cho
and Lee, 2003) such that {f+'=7/1—

We next relocate all of internal nodes such that

C)?ZP,(Z?‘Z-

finite element nodes located in the same vertical
line are in uniform spacing. In this manner, the
free surface is tracked by keeping the liquid mesh
unchanged and the liquid mesh is adapted so as
to keep the mesh regularity fairly. As a next step,

b
I AN
- o
9 a |
% "“\_,_7 “E\\\
- i
H "\*:: . (:".{?;j
] 1 ey
- . o . ¥
] - r '
- M‘»‘ - 7 _[
! : -
| o 7 “3”“““““"% -
. N l
. | |
{a)

U smnomu v fevef

\

E,m.’rm

T |

S

R 1T
(b)

Fig. 4 Volume-conservative remceshing : {a) Reloca-

tion of finile clement nodes ; and (b) Correc-

tion of the free surface nodes

we integrate Eq. (17) to specily the velocity
potential ¢}t at the free surface JSF"' tracked.
However, the time derivative of the free surface
velocity potential in the moving co-ordinate sys-
tem { X'} is related to one in the semi-Lagrangian

liquid mesh { Xu} as follows:

I¢n
ot

_ 0%a

3 G
o ol 9t ady (34)

Ot ay

Thus, with respect (o the liquid mesh, the time
derivative of the free surface velocily potential at
time stage fp is rewritten as

0% | _ab| agn fivql)g.vgbﬁ
dt |n 0t ln Oy
J ; (35}
—gl"—x Hxi_ grns (uy on g7

After computing this time derivative, we apply the

same predictor-corrector method as in the free

surface tracking to specify the velocity potential
' on the new free surface a4 ™
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5. Numerical Experiments

The numerical formulae derived so lar were
coded into a test program written in Fortran, and
MSC/Patran was interfaced for the cutput visu-
alization, Referring to Fig. I, we confine to large
amplitude sloshing problems in which the rigid
tank is subject to & sinusordal horizenmtal ex-
citation x%(f) =z sin wi. Based upon the litera-
turc survey on the nonlinear sloshing analysis we
consider two simulation cases. Geometry and cx-
crtation conditions of case I which was taken by
Chen ct al. (1996} and Okamoto and Kawahars
(1990) are as follows: &=1.0m, £,=075m,
a=—9.3x10"m and @=0.9995q, (here, the fun-
damental sloshing frequency wp is 5.31384 rad/s).
On the other hand, those of case 2 chosen by
Nakayama and Washizu (1981) are & of 0.9 m,
Hy ol 0.6m, & of 2107 m and w=0.9547ay
{awo=>5.760"7 rad/s), respectively.

In the beginning, the liquid demains in both
simulation cases were uniformly discretized with
nine-node quadratic elements in the manner of
24 partitions in the horizontal direction and 12
partitions in the vertical direction, The time step
size A was set by 3310775 for all simulation
cases presented in this papey. The predictor-—cor-
rector method composed of two fourth-order
schemes (30) and {(31) is known us a highly
accurate time intcgration scheme with the trun-
cation error of (/)% In addition, the time step
size was chosen through the preliminary para-
metric canvergence experiments to the tank width,
the liquid depth and the excitation amplitude and
frequency,

We first examine the cffect of the parameter @
on the numerical dissipation and the liquid vol-
ume change. This numerical experiment was done
with case | because the sloshing nonlinearity is
higher than case 2. It is worthy noting that this
preliminary simulation was performed without
correcting the frec-surface height according to
Eq. (33) so that errors in the free surface height
and the toral liquid volume are allowed to accu-
mulate with time. Referring to Fig. 5(a}, the
numerical dissipation is getting suppressed as

Jin-Rae Cho and Hong-Woo Lee
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Fig. 5 Effects of the parameter #: (&) On the lree
surface elevation (at the right end x—0.5m) :
{b) On the liquid volume conservation

becomes smaller such that the time history re-
sponses of the free surface elevation at @=0.1
and 0.01 do not show u noticeable distinction.
On the other hand, the otal liquid volume, re-
ferring to Fig. 5{b}, considerably dscreases when
@ is unity, and contrary it slightly increascs when
a=0.1. T'rom these results, we found that the
choice of @ near 0.1 is recommendable.

Next, we examine the effects of the [luid mesh
pattern on the time history vesponse of the free
surface elevalion with @ sct by O.1. Uniform mesh
and locally refined meshes are to be tested for
the numerical stability and dissipation in two
simulation cases. 1n case |, we simulate the long-
time responsc of the large beating phenomenon to
examine the numerical dissipation with time. On
the other hand, in case 2, we examine the numer-
ical stability in the short-time history response by
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comparing with the existing refercnce solution.
Differing from the real liquid sloshing including
the damping effect, its numerical simulation with
an ideal flow assumption should kcep the same
amplitude in repeating events unless the numeri-
cal dissipation does accumulate {Faltinsen ot al.,
2000; .

Long- and short-time history responses pre-
dicted by the uniform mesh of the free surface
elevation in cases | and 2 are represented res-
pectively in Figs. 6(a) and 6(b). Twe uniform
meshes [or both simulation cases are generated
with the same mesh partitions {i.e. 24 times 12)
and the free sur(ace elevations arc measured at the
right ends {i.e. at x=0,5m in case | and x=0.45
m in case 2). Referring to Fig. 6(a), one sce that
the uniform mesh failed to simulate the beating
phenomenon such that not only the first beating
wave is getting to be distorted but also the beat-
ing amplitude shows a monotonic decrease with
the increase of beating events. Furthermore, the

- presest (umform mesh)

MNakayama and Washin (19%1)

b

Fig. 6 Use of uniform mesh Long-time history
of the beating phenomenon (case 1}; (b)
Numerical instability at the beginning (case

2)

vniform mesh preduces the numerical instability
at the beginning of the free surface time history, as
indicated by circle A in Fig. 6(b) . Differing from
the reference solution, the free surface response
predicted by the uniform mesh starts with a
downward fluctuation.

The main reason leading to these poor resulls
is because the uniform mesh could not sufficiently
capture the flow singularity. As shown in Fig. 7
(&), a large amplitude liquid sloshing exhibits
the significant singularities in both flow velocity
and dynamic pressure ficlds at the free surface
and left and right ends of tank. Referring to the
paper by Cho and Oden (1997), an effective way
to capture the singularity is io use locally refined
meshes. So, we refine the both uniform meshes in
the manner represented in Fig, 7(b).

As represented in Fig. 8(a), the locally refined
mesh successfully prevents the numerical dissi-
pation occurred in the long-time history response
of the large beating phenomenon such chat beat-
ing events display almost same wave putterns and

o veloea dynemie e

S more partitions

2 Imore partitions

= Locally refined mesh

12 wisiferm layers
b)
Fig. 7 Singularity and mesh refinement: (a) Flow
velocity and dynamic pressure fileds (case 1)
(b) Local refinement of fluid meshes
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Fig. 8 Use ol locally refined mesh: (a) Long-time
history of the beating phenomenon (case 1);
(b) Numerical instability at the beginning

{ A
{case 2}

amplitudes. As well, the locally refined mesh
overcomes the numerical instability occurred at
the beginning of the free surface time history
response, as represenied in Fig. 8(b}, where the
previous inconsistent downward fluctuation dis-
appears completely.

6. Conclusion

The numerical dissipation and stability of the
free surface tracking method devised for the real
time nonlinear [inite clement analysis of large
amplitude sloshing flow have been addressed.
The effects of the parameter & introduced lor the
time differentiation of the free surface clevation
and the fluid mesh pattern were intensively ex-
amined. Through the numerical experiments we
found that the choice of @ near 0.1 is most sui-
table to minimize both the numerical dissipation
and the total fluid volume change with time. On

the other hand, uniform mesh failed the reliablc

simulation of the long-time beating phenomenon
and the stable prediction of the initial sloshing
time history response. The main reason has been
found that uniform mesh can not sufficiently
capture the singularity in the flow vclocity field.
However, the use ot locally refincd mesh success-
fully overcome the numerical dissipation in the
long-time beating simulation and the numerical
instability occurred at the beginning of the slosh-
ing time history response.
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